本文目录一览:
- 1、哈勃天文望远镜为什么能看那么远 为什么没有"哈勃二号"呢
- 2、为什么人类短短几十年可以看到上百亿光年的宇宙? 哈勃望远镜一秒能看
- 3、哈勃天文望远镜简介
- 4、有谁知道哈勃望远镜的工作原理
- 5、哈勃短app下载苹果?
哈勃天文望远镜为什么能看那么远 为什么没有"哈勃二号"呢
哈勃望远镜长13.3米,直径4.3米,重11.6吨,造价近30亿美元,于1990年4月25日由美国航天飞机送上高590千米的太空轨道。哈勃望远镜以时速2.8万千米沿寂静的太空轨道运行,默默地窥探着太空的秘密。
哈勃望远镜是有史以来最大、最精确的天文望远镜。它上面的广角行星相机可拍摄到几十到上百个恒星照片,其清晰度是地面天文望远镜的10倍以上,其观测能力等于从华盛顿看到1.6万千米外悉尼的一只萤火虫。
1999年4月,利用哈勃望远镜拍摄的深空图像,美国纽约州立大学斯托尼布鲁克分校的研究人员发现了宇宙边缘附近有一个距离地球130亿光年的古老星系,这是迄今为止人类所发现的最遥远的天体;利用全新的近红外仪器,透过茫茫的星际,人们发现了“皮斯托”星,这是至今发现的最大的一个天体。利用哈勃望远镜的宽视场和行星摄像机,科学家获取了第一张伽玛射线爆发的光学照片;哈勃望远镜上的超级摄谱仪又向人们揭示了超新星的化学成分。
哈勃望远镜所收集的图像和信息,经人造卫星和地面数据传输网络,最后到达美国的太空望远镜科学研究中心。利用这些极其珍贵的太空图像和宇宙资料,科学家们取得了一系列突破性的成就。沉寂多年的天文学领域,正发生着天翻地覆的变化。
哈勃望远镜预计2010年“退休”。21世纪的太空望远镜研制计划正紧锣密鼓地在全世界范围内展开。21世纪初叶,将有数台大型天文观测设备送入外层空间,这将是继哈勃望远镜取得的辉煌成就之后的,人类探测太空的又一次大手笔。
空间红外望远镜
将于2001年发射升空,其主镜口径84厘米,配备有灵敏度极高的红外探测元件。为彻底避开地球红外辐射的干扰,它将遨游于近百亿米之遥的深空轨道。当望远镜在外层空间、处于极低温的条件下进行观测时,红外波段的宇宙“面容”纤毫毕现,较之于地面观测将清晰百万倍。
新“哈勃望远镜”
美国正在积极筹划研制新一代太空望远镜,旨在接替目前还在轨道运行的哈勃望远镜。新一代望远镜主镜为口径达7.5米,其观察范围比“哈勃”大4~6倍,清晰度却不亚于“哈勃”。新一代望远镜计划2003年开始制造,重量预定3000千克,而“哈勃”重达10000千克。制造这么大而又这么轻的镜片,要求在材料上有巨大的突破和进展。
“哈勃”在对宇宙形成初期进行探测时留下了1亿年到10亿年之间空白,新一代望远镜将填补这段空白,研究宇宙的甚早期,观察诸星系形成时期的情况。“哈勃”专门用紫外线和可见光中的短波来观测宇宙,而新一代望远镜则用电磁光谱中波长较长的红外线部分来深入探索宇宙。因为宇宙在扩张的过程中诸星系远离地球向外运动,它们的光变成波长较长的红光,以红外线的形式传到地球上。
新一代望远镜不像“哈勃”那样绕地球轨道,而是将稳定地占据地球与太阳之间、月球以外约150万公里的一条轨道。
空间干涉望远镜
预计于2005年3月被送入预定轨道。它实际上由7架30厘米口径的镜面组成,进入轨道空间后将释放排列成长达9米的望远镜阵。运用光学干涉技术,其最终的空间分辨率可优于哈勃望远镜近千倍。建造空间干涉望远镜,要求极高的技术水平,它的应用将使天文学家分辨遥远恒星的能力迈上一个新的台阶。
地外行星搜寻者
“地外行星搜寻者”是美国宇航局空间计划的“点睛”之笔,计划于2012年发射升空。它汇集了人类太空望远镜技术的精华,将在寻找太空生命方面崭露头角。“地外行星搜寻者”的设计思路与空间干涉望远镜相似,但在规模与性能上有重大突破。空间干涉望远镜的可收卷镜阵延伸9米上下,而“地外行星搜寻者”的镜面阵列延展可达百米。利用它空前的分辨率,人们将足以探明,在太阳系邻近数十光年之内,是否存在与地球条件相似的行星,并进一步为解开地外生命的“悬念”获取宝贵的线索。
总之,21世纪的“天眼”,将具备前所未有的高灵敏度、高分辨率、大视场以及多天体观测能力。就整体而言,它们观测宇宙的效能将全面超越其“老大哥”----哈勃太空望远镜,从而全方位地开阔人类探测宇宙的视界。美国正在研制下一代太空望远镜,并命名为“詹姆斯·韦布”。“詹姆斯·韦布”的预计视野比“哈勃”更远。按照设计,它的主透镜直径至少有6米,是“哈勃”主透镜直径的2.5倍,收集宇宙遥远天体光线的本领将更强。“詹姆斯·韦布”装备的仪器将包括近红外和中红外照相机。它强大的红外观测能力有望帮助科学家对宇宙早期星系的诞生等进行更深入的研究。“詹姆斯·韦布”太空望远镜预定在2008年底~2009年发射升空。
为什么人类短短几十年可以看到上百亿光年的宇宙? 哈勃望远镜一秒能看
光1年只能走1光年,没错。但因为上百亿光年之外的宇宙发出的光,在上百亿年之前已经在路上了,所以只要有好的望远镜,就可以看到上百亿光年之外的宇宙,只不过是上百亿年前的样子。
看到越远的天体发出的光,那些光子发出的时间越早。所以理论上说,只要望远镜足够强大,瞄准得足够远,是可以看到大爆炸早期的宇宙的。不过应该看不到大爆炸本身——因为大爆炸最最初期的阶段,连光子都无法存在的。
哈勃天文望远镜简介
哈勃太空望远镜
哈勃号太空望远镜是被送入轨道的口径最大的望远镜。它全长12.8米,镜筒直径4.27米,重11吨,由三大部分组成,第一部分是光学部分,第二部分是科学仪器,第三部分是辅助系统,包括两个长11.8米,宽2.3米,能提供2.4千瓦功率的太阳电池帆板,两个与地面通讯用的抛物面天线。镜筒的前部是光学部分,后部是一个环形舱,在这个舱里面,望远镜主镜的焦平面上安放着一组科学仪器;太阳电池帆板和天线从筒的中间部分伸出。
望远镜的光学部分是整个仪器的心脏。它采用卡塞格林式反射系统,由两个双曲面反射镜组成,一个是口径 2.4米的主镜、另一个是装在主镜前约4.5米处的副镜,口径0.3米。投射到主镜上的光线首先反射到副镜上,然后再由副镜射向主镜的中心孔,穿过中心孔到达主镜的焦面上形成高质量的图像,供各种科学仪器进行精密处理,得出来的数据通过中继卫星系统发回地面。
除了光学部分,望远镜的另外一个主要部分就是装在主镜焦平面上的八台科学仪器,分别是:宽视场和行星照相机、暗弱天体照相机、暗弱天体摄谱仪、高分辨率摄谱仪、高速光度计和三台精密制导遥感器。
这些科学仪器是为望远镜在最初几年运转期间所配备的。为了使太空望远镜能够充分利用最新技术成果,焦平面上的这些仪器设计成可作各种不同组合和更换方式。在望远镜工作期间,可以通过航天飞机上的航天员进行维修更换,必要时,也可以用航天飞机将整个望远镜载回地面作大的修理,然后再送入轨道。太空望远镜的寿命按设计要求至少15年,估计实际可达几十年。
太空望远镜在距地面500公里的太空上进行观测,不仅不受恶劣气候的影响,每天都可以进行观测,而且摆脱了地球大气的干扰,能够达到地面上任何望远镜也达不到的高灵敏度和高分辨能力。
但不幸的是, 由于制造上的误差,哈勃太空望远镜不能辨别140亿光年以外的物体,而只能看清40亿光年的物体。 另外,它的太阳能电池板因热胀冷缩还存在颤抖。为此,美国的数名宇航员于1993年进行了两次检修,经过艰苦的努力,终于修复了患了“近视”的哈勃太空望远镜,使其分辩率达到最初要求。
科学家赶制最大望远镜 清晰度高于哈勃10倍
美国亚利桑那州立大学的“史都华天文台镜子实验室”正在忙着为世界上直径最大的“巨型麦哲伦天文望远镜”赶制第一面直径为8.4米的主观测镜片,预计7月18日开始生火铸造。
将于2016年在位于智利拉斯卡姆帕纳斯地区的卡内基天文台建成并投入使用的“巨型麦哲伦天文望远镜”的主观测镜片,将由7个直径均为8.4米的大型子镜片组成。镜片将以甘[被屏蔽广告]
菊花的形状被组装在一起:1个居中,另外6个则环绕在其周围。6个环绕在四周的镜片能够观察到中心镜片不能观察到的任何角度的光线。因此,这种设计令这台望远镜的聚光能力相当于一面直径为25.6米的巨型望远镜,功能是当前最大光学望远镜的4.5倍,成像清晰度将达到“哈勃”太空望远镜的10倍。
研究人员称,“巨型麦哲伦天文望远镜”刷新纪录,成为单一镜片望远镜中直径最大的望远镜,并将镜片的制造技术提升至一个新的境界。之前单一镜片望远镜直径最大的是新皇望远镜(Subaru),其直径超过8米。
为了顺利建造这台巨型望远镜,美国的加州卡内基天文台、哈佛大学、史密松天文物理台、亚利桑那州立大学、密歇根州立大学、麻省理工学院、得克萨斯州立大学和得克萨斯农工大学组成了一个联盟。据了解,“巨型麦哲伦天文望远镜”投入使用后,将担负探寻宇宙中恒星和行星系的生成、暗物质、暗能量和黑洞的奥秘,以及银河系的起源等重任。
有谁知道哈勃望远镜的工作原理
人们总是对不了解的事物充满了好奇,比如遥远天体的真面目究竟是什么样子的。于是,人们幻想有一种千里眼,能看清遥远的东西,1608年,千里眼终于被发明出来,这就是望远镜。
这一年,在荷兰的一个眼镜作坊里,一名学徒在玩耍,当他用一前一后两块镜片观察物体时,发现远处的物体离自己很近,受此启发他发明了望远镜。他的老板不失时机地将这一发明转化成商品,并把这一发明献给政府。有了这些望远镜的帮助,弱小的荷兰海军打败了强大的西班牙舰队,使荷兰人获得了独立。
荷兰人对这个发明采取了严密的封锁,但是有关望远镜的消息还是让伽利略知道了,他立刻意识到这种东西的价值和作用。经过细心研究,伽利略也独立发明出自己的望远镜。当这架天文望远镜缓缓扫过天空时,现代科学的帷幕缓缓拉开,有关天文学最基本的事实一个个被发现出来。人们说;“哥伦布发现新大陆,伽利略发现新宇宙。”
伽利略的望远镜十分简单,它有两个镜片组成,前面的叫物镜,是一个边缘薄中间厚的透镜。具有放大功能。后面的叫目镜,镜片的中间薄周边厚,具有缩小功能。这样两个镜片配合一个圆筒组合在一起,就是一架最简单的望远镜。伽利略用它发现了木星的周围总是有四颗小星陪伴在左右,这就是木星的四颗卫星,又叫做伽利略卫星;他还发现土星好像长着一对大耳朵,那是土星的光环;他还仔细观察了月球的环形山。由于有了望远镜,人们终于知道,天上的银河原来是由无数的星星组成。这些新发现,成为哥白尼日心说的有力证据。
开普勒的望远镜
使望远镜进一步有所发展的是开普勒,它把望远镜的目镜由凹透镜改换成了凸透镜,这样前后两个镜片都具有放大作用,提高了望远镜的放大倍率。它所呈的像是倒立的,但用在天文观测上基本没有什么影响,这种望远镜叫做开普勒望远镜。
如果凸透镜对着太阳,那么它在地上就会出现一个非常亮的焦点,这个焦点距透镜中心的距离就叫做透镜的焦距,对于开普勒望远镜来说,用物镜的焦距除以目镜的焦距,就得到了它的放大倍率。开普勒望远镜的镜筒一般都很长,这也使它的放大倍率提高了不少。
使开普勒望远镜获得大发展的是威廉·赫歇尔,也就是发现天王星的那一位,他一生磨制了许多大型望远镜的镜片,他的望远镜看起来就像一门巨炮指向天空。这使他的观测手段一直优于别人,也给他带来了许多学术成果。在他的带领下,他的妹妹和儿子也都成为天文学家。
牛顿的望远镜
伽利略和开普勒的望远镜都属于折射望远镜,它们都由两个镜片组成,工作原理并不复杂,但它们的缺点却是明显的,伽利略望远镜的放大倍率太小,而开普勒望远镜的镜筒太长。有没有办法使一种望远镜既有较大的倍率镜筒又不长呢?反射望远镜就有这个优点。
反射望远镜细分起来,又有许多种类,最常见的就是牛顿式反射望远镜。它是由英国物理学家牛顿在1671年发明的。它的物镜是一片凹面镜,而不是凸透镜,它装在望远镜筒的后边,而不是前边。它的表面镀银,可以把光线汇聚到前边,在焦点处固定有一面镜子,这个镜子把物镜的图像掉转90度,射在望远镜的筒壁上,在筒壁上,设置有一个目镜,严格说来,它是一个目镜组,是由好几个镜片组成的,相当于一个目镜,这样可以提高图像质量。用这种望远镜观测天体的时候,观测者不是在望远镜的后边,而是在望远镜的侧面。由于它的反射平面镜固定起来很复杂,所以它的镜筒也并不是标准的圆形,而是中部有段鼓起,就像葫芦一样,所以又叫宝葫芦望远镜。
望远镜的发展
以上是较简单的三种望远镜的基本概况,对于较专业的天文观测来说,它们实在太简单了。远远满足不了观测需要。后来又有人发明了卡塞格林型,施密特性和马克苏托夫型望远镜,它们都以发明者的名字命名,光路原理也比较复杂。
人们往往追求望远镜的望远倍率,这一点是不可能无限扩大的。倍率太高,会影响它的成像质量。对于天文望远镜来说,倍率是一个次要的方面,人们追求的是物镜直径的大小,直径越大,它所收集的光子也越多,分辨能力也就越强。
美国曾经在1948年制造出了直径达5米的天文望远镜,它坐落在帕落马山天文台,它大大开拓了天文学家的视野,帮助他们拍摄了许多宇宙深空的照片,使美国天文学家的研究水平一下子提高了许多。不甘落后的苏联人坐不住了,于是他们造出了直径达6米的望远镜,但是这台当时世界上口径最大的望远镜成像质量很差。
现在人们已经认识到,望远镜的口径不能造得太大,过大的口径会使它的自重太大,这样就会造成镜片变形,而且它的自重也会把承载它运行的电动设备压的不能正常运作。继续提高望远镜分辨能力的新思路是制造许多小镜片,然后组合成一个大镜片。
在地球上,空气中的灰尘,不停地抖动着的大气,都成为影响望远镜观测质量的重要因素。现在的天文望远镜都建在晴朗少雨的高山上。但这还是不够理想,于是,人们又提出把望远镜放到太空去。哈勃望远镜就是目前工作最出色的一架太空望远镜,它像卫星那样围绕着地球运行,为我们提供了许多高精度的天体照片,被誉为天文学的“发现机器”。
望远镜的附件
星星在天上是一点一点地至东往西运行的,当你把望远镜对准了它以后,很快就会发现它移动了,这样就需要有一种自动跟踪设施。现在即使是天文爱好者使用的望远镜,也有自动跟踪装置。除此之外,还有导星镜,有了它的帮助,可以很容易找到目标。如果你想把看到的景象拍成照片,那么还有摄影接口,你想观测明亮的太阳,那么还有滤光镜,因为用望远镜观测太阳,会灼伤眼睛,伽利略晚年患有眼疾,就是他用望远镜观测太阳造成的。
现在望远镜的目镜通常由几组透镜组成,这样可以有不同的望远倍率,配上不同倍率的目镜组可以得到不同的观测结果,如果想要看宽广的视场,那么就用低倍率目镜组,如果想要看精细的结构,那么就用高倍率目镜组。
早期的望远镜,由于镜片制造工艺简单,常常出现像差和色差这两种毛病,它们使看到的东西或者变形,或者颜色失真。为了解决这个问题,人们就尽量延长望远镜的焦距。1722年,不拉德雷测定金星直径的望远镜,其物镜焦距长达65米,比百米短跑跑道的一半还长。后来,消色差望远镜诞生,它的目镜是由两个镜片组成,一凸一凹贴合在一起,这样就可以消除色差和球差等多种毛病。
从望远镜诞生到现在,已经历了好几代的演变,因此也就产生出许多故事。可以肯定的是,只要人们探索宇宙奥秘的好奇心存在,那么有关望远镜的故事也就永远没有结束。(国家航天局网特约撰稿/北辰)
背景知识:
色差:由白色物点向光学系统发出一束白光,经该光学系列折射后,组成该束白光的红、橙、黄、绿、青、蓝、紫等各色光,不能会聚于同一点,即白色物点不能结成白色像点,而结成一彩色像斑的成像误差,称为色差。
球差:由主轴上某一物点向光学系统发出的单色圆锥形光束,经该光学系列折射后,若原光束不同孔径角的各光线,不能交于主轴上的同一位置,以至在主轴上的理想像平面处,形成一弥散光斑(俗称模糊圈),则此光学系统的成像误差称为球差
哈勃短app下载苹果?
这个短app如果想要在苹果上进行下载的话,是需要使用应用商店的权限的。