本文目录一览:
没有生命腐败的蛋白质化解走叫作什么?
那就是用化学的方式来分解蛋白质,通常叫做蛋白质的水解。是在酸性或者是碱性溶液中进行的水解。
什么东西化解蛋白质?
对蛋白质过敏并不罕见,对那么多种蛋白质都过敏的不常见。目前对于蛋白质过敏,最保险的做法就是避免吃到那些种类的蛋白质。
但是人体又必须摄入氨基酸。如果实在找不到不过敏的蛋白,那么深度水解蛋白是一种可行的解决方案。只是一般深度水解的蛋白都很难吃。
蛋白质的遗传密码是通过什么方法破译的?遗传密码有哪些主要特征
混合共聚物碱基配对
2)混合共聚物(mixed copolymers)实验对密码子中碱基组成的测定: 1963年,Speyer和Ochoa等发展了用两个碱基的共聚物破译密码的方法。例如,以A和C原料,合成polyAC。polyAC含有8种不同的密码子:CCC、CCA、CAA、AAA、AAC、ACC、ACA和CAC。各种密码子占的比例随着A和C的不同而不同,例如当A和C的比例等于5:1时,AAA:AAC的比例=5× 5× 5:5× 5× 1=125:25。依次类推。实验显示AC共聚物作模板翻译出的肽链由六种氨基酸组成,它们是Asp,His,Thr,Pro,和Lys,其中Pro和Lys的密码子早先已证明分别是CCC和AAA。根据共聚物成份不同的比例和翻译产物中氨基酸比例亦不同的关系,Speyer等确定了Asp、Glu和Thr的密码子含2AlC;His的密码子含1A2C;Thr的密码子也可以含1A2C;Pro为3C或1A2C;Lys为3A。但上述方法不能确定A和C的排列方式,而只能显示密码子中碱基组成及组成比例。例如,Asp,Glu和Thr的2A1C可能有三种排列方式,即AAC、ACA、CAA。此外,通过反复改变共聚物成份比例的方法亦十分麻烦和费时。
aa-tRNA与确定的三核苷酸序列结合
正当Speyer等人按上述2)方法奋力时,Nirenberg和Leder于1964年建立了破译密码的新方法,即tRNA与确定密码子结合实验。该方法利用了如下事实:即是在缺乏蛋白质合成所需的因子的条件下,特异氨基酸-tRNA(aa-tRNA)也能与核糖体-mRNA复合物结合。最重要的是这种结合并不一定需要长的mRNA分子,而三核苷酸实际上就可以与核糖体结合。例如,当polyU与核糖体混合时,仅有Phe-tRNA(苯丙氨酰-tRNA)与之结合;相应地Pro-tRNA(脯氨酰-tRNA)特异地与polyC结合。还有GUU可促进Val-tRNA(缬氨酰-tRNA)结合,UUG促进Leu-tRNA(亮氨酰-tRNA)结合等。虽然所有64个三核苷酸(密码子)都可按设想的序列合成,但并不是全部密码子均能以这种方法决定因为有一些三核苷酸序列与核糖体结合并不象UUU或GUU等那样有效,以致不能确定它们是否能为特异的氨基酸编码。
用重复共聚物破译密码
4)用重复共聚物(repeating copolymers)破译密码:
几乎在上述Nirenberg和Leder工作的同时,Nishimura,Jones,和Khorana等人应用有机化学和酶学技术,制备了已知的核苷酸重复序列。蛋白质在核糖体上的合成可以在这些有规律的共聚物的任一点开始,并把特异的氨基酸参入肽链。例如,重复序列CUCUCUCUCU......是多肽Leu-Ser-Leu-Ser......或者是多肽Ser-Leu-Ser......的信使分子.使用共聚物构成三核苷酸为单位的重复顺序,如(AAG)n,它可合成三种类型的多肽:polyLys、polyArg和polyGlu,即AAG是Lys的密码子,AGA是Arg的密码子,GAA是Glu的密码子。又如(AUC)n序列是polyIle、polySer和polyHis的模板。如此至1965年破译了所有氨基酸的密码子。