黑客业务

24小时接单的黑客,黑客业务,黑客怎么找,网络黑客,黑客技术

图灵机破解(如何破解缸中之脑)

本文导读目录:

伟大的图灵与恩尼格码的对决,最终胜利者为何英年早逝?

图灵在二战结束后继续从事计算机与数学的研究,但在晚年因其同性取向并且不愿在这件事情上说谎惹上了牢狱之灾,被迫进行化学阉割,最后不堪其辱自杀身亡。

图灵在计算机科学领域对人类的重大贡献有哪些?

1936年11月30日出版的《伦敦数学学会会刊》,有一篇标题看来平平无奇的文章︰〈论可计算数及其在判定问题上的一个应用〉,作者是图灵。

2012年,图灵诞生100周年,学界将该年订为「图灵年」,举办活动以纪念其重大贡献。2014年电影《模仿游戏》也讲述了图灵于二战时协助破解德军密码的故事(虽然忽略了波兰数学家的贡献),相信不少人对图灵的名字、贡献及其因同性恋倾向被迫害的经历略有所闻。

图灵的众多贡献当中,最为重要的正是1936年这份论文,因为在文中他首次提出「图灵机」这个概念——文中他称为a-机器,a代表「自动」(automatic)——为现代计算机、计算机科学及计算理论奠下数学基础。

当然,除图灵以外,他之前及之后均有不少人对计算机发展贡献良多。不过在这篇文章,让我们先看一看他的「图灵机」为何如此重要。

数学基础

一切源自一个貌似非常奇特、与计算机毫不相干的问题︰我们如何确定数学知识可靠?

19世纪,数学发展越来越抽象,因此亦出现了各种公理系统——公理是指被视作「不证自明」的命题,数学家以公理为基础,再用逻辑推论出不同数学定理。但到了20世纪初,有批数学家(以及关心数学的哲学家)开始担心数学知识不够稳固,他们想确保由特定公理出发时,不会推论出现矛盾——假如有矛盾的话,数学就完了。

他们不是杞人忧天,当时集合论中出现了数个悖论(指一种导致矛盾的命题),或许会导致数学出现矛盾。幸运的话,有些悖论可以透过引入新概念去解决,例如自数学界出现「极限」的严格定义后,甚少人会认为「阿基利斯永远无法追上乌龟」的芝诺悖论是个问题。

那个时候这批数学家大概分成三派,其中一派是数学家

主导的「形式主义」。简略来说,形式主义者希望藉由把数学还原成纯粹符号的形式系统,再用(有限制的)数学去证明这个系统不会出现「0=1」之类的矛盾句,从而确保数学不会产生矛盾。

罗素及怀海德三大册《数学原理》,则是从逻辑主义出发,尝试以逻辑公理推导出整个数学系统——他们想的是,既然逻辑不可能自相矛盾,只要证明数学是由逻辑延伸出来,就可以确保数学一致。

两人终告失败(原因并非本文重点),不过书中改良自弗雷格(Gottlob Frege)的逻辑系统,促进了数理逻辑发展。其后逻辑学家整理出一套现称为「一阶逻辑」的系统,包含若干逻辑公理和推导规则,由此出发可以推导出不少已知的逻辑定理,是个很好用的系统。

判定问题

回到希尔伯特,他想完全将数学化约成一个仅有符号的形式系统(这方面罗素及怀海德贡献了不少),只要按照规则,完全不懂数学、不知道符号意义的人也可以推演出「数学定理」,这样就可以撇除人为错误(例如受直觉误导)。

他又希望找到一套清晰的判定程序,去确认如何判断一个逻辑公式是否属于逻辑系统的定理,假如成功,下一个目标自然是判断数学命题是否数学定理——这样数学家就不用再苦苦思索那些悬而未决的数学猜想,只要一起运行这个「判定程序」,就可以获得答案,简单直接。

不过,希尔伯特于1928年提出的这个「判定问题」,在1935至1936年期间,分别由数学家邱奇及图灵先后得出答案︰不可能。

要解决判定问题,首先需要厘清一个概念︰何谓「清晰的判定程序」?当然,有一些条件非常明显,例如程序必须是有限的——仅包含有限条规则、能够在有限时间完成。程序当中的规则也必须极之简单,以符合希尔伯特的要求。

举个例,假如我要教一位小学生判定一个数字以否质数,可以利用他懂得「整数」、「除数」、「余数」和「比较大小」等概念,去让他按照程序执行,然后他就会发现7是质数、8不是质数、9不是质数…

但希尔伯特所要求的还要更少——执行规则的人只能够辨认符号(不会把不同的符号混淆)、抄写符号、按照规则把符号串转换等,甚至不懂「加减乘除」等基本数学运算,也不会知道数学符号的意思。

图灵机

终于回到图灵的论文,在〈论可计算数〉中他设想以下一部机器,包含以下部份︰

·一条纸带,这条纸带分成一格一格的(好吧听起来的确有点像厕所卫生纸),每格可以印一个符号。第一格的编号为0,然后是1、2、3…没有尽头,以 表示空格。

·可以在纸带上左右移动的读写头,它每次能够读取所处位置那一格的内容(同一时间只可读取一格),亦可以改变其内容——改写其他符号或变成空格。

·会存在机器目前状态(state)的状态缓存器,每部机器的可能状态数目有限,其中一个称为「开始状态」,就是机器一开始时所处的状态。

·储存所有规则的指令集,机器会根据其目前状态以及读写头当时读取的方格内容来执行指令,进行下一步动作。

上述4个部份当中,决定机器如何运作的是指令集及状态。为方便说明,以下机器的状态以颜色表示,而符号只有0、1及(空格)。图灵把指令限制在这个形式︰

·当处于A状态并读取到符号X时,写入符号Y,移动读写头,并转至B状态。

以下是一些例子︰

·当处于红色状态并读取到符号0时,写入符号1,读写头左移一格,并转至蓝色状态。

·当处于黄色状态并读取到符号1时,写入符号1(即维持原状),读写头留在原处,并维持在红色状态。

·当处于蓝色状态并读取到符号0时,清除符号(变成空格),读写头右移一格,并转至黄色状态。

如果没有适用的指令时,这部设想中的机器——后世称为图灵机——就会停止运作。

一个图灵机模型

不同图灵机分别,在于它们拥有不同的可能状态以及指令集——事实上,我们只需要看一部图灵机的指令集,就知道它可以有甚么状态,因此可以说,图灵机的指令集(以及一开始时纸带上的内容)决定了它如何运作。

这些看似非常简陋的图灵机其实可以做非常多事情,图灵在论文中举了两个图灵机作例子︰一个可以在纸带上不断印出「01010101….」,另一个可以印出「001011011101111...」。事实上,我们也能设计出会进行加法、减法、乘法、除法、比较两个数字大小…的图灵机(在图灵机中,数字可用符号「1」的数量来表示,例如用「111」代表3、「1111111」代表7,数字与数字之间则用符号「0」去分隔)。

通用图灵机

图灵的〈论可计算数〉没有在此打住,正如上文所述,一部图灵机的指令集可以抽述了它如何运作,因此图灵就想到把图灵机(的指令集)编码,换言之,用不同的数字就可以表述不同的图灵机——就这样,每个图灵机都获得一个标准编号。

下一步,图灵构造了一部特别的图灵机,称为「通用图灵机」。通用图灵机可以「扮演」不同的图灵机——只要输入某部图灵机M的标准编号,它就可以像M一样印出相同的符号序列。

如果上面的句子太过抽象,不妨换个(灵异一点的)说法︰有了通用图灵机以后,理论上我们不再需要制造其他图灵机——因为其他图灵机都可以由「硬件」变成「软件」,「附上」通用图灵机来运作。

对,那就是为何我们打开手机、计算机上的计算数件,便能够使用计算器的功能——现代计算机某程度上是一部通用图灵机(当然,计算机没有无限长的纸带)。通用图灵机成为现代计算机的理论模型,图灵这篇论文也奠定了计算机科学、可计算性理论等学科的基础。

当然,由纸上理论代为现实,中间还有一大段历史发展,图灵亦有参与,在此先行略过。(停机问题也是〈论可计算〉的重要结果,篇幅所限同样略过。)

邱奇—图灵论题

在图灵之前,数学家——特别是关心数理逻辑的数学家——已经在思考如何严格定义「机械程序」或者「算法」,因为缺乏这个定义的话,界定「形式系统」时会出现一个问题︰怎样的符号变换规则可以接受?

哥德尔(Kurt Gdel)在1931年证明其著名的不完备定理时,引入了(原始)递归函数的概念,以便从数学角度讨论形式系统,其后他跟英年早逝的埃尔布朗(Jacques Herbrand)将之发展成广义递归函数。但要直到图灵的论文面世后,哥德尔才认为人们能「精确及毫无疑问充足」地定义形式系统。

文首提到比图灵稍早解决判定问题的邱奇,在他1936年的论文中使用了λ演算(λ-calculus)去地义何谓「λ可计算函数」。而对于任何(以自然数为定义域的)函数f(x),如果存在一部可以顺序印出f(0), f(1), f(2)…的图灵机,那么这个函数就称为「图灵可计算函数」。

邱奇和图灵证明了这三种函数——广义递归函数、λ可计算函数及图灵可计算函数——等价,换言之,虽然它们有非常不同的定义,但实际上还是一样。〈论可计算数〉发表以后,也有各种计算模型出现,但没有一个能够超越图灵机——它们所定义的函数,都是可以用图灵机(或λ演算、广义递归函数)去定义。

邱奇及图灵认为,任何可以计算的函数,都是λ可计算/图灵可计算函数,这称为「邱奇—图灵论题」。他们把「可以计算的函数」这个直观概念,跟数学上有严格定义的「λ可计算/图灵可计算函数」划上等号,由于论题涉及直观概念,本身无法以数学证明。

根据理论计算机科学这80年来的发展,邱奇—图灵论题几乎无人质疑︰即使计算机速度突飞猛进,能够完成各种以往无法想象的任务,现实中我们仍然未能找到一个超越图灵机的计算模型(理论上倒有一些,但不包括现时的量子计算机模型)。

未来发展会怎样?不知道,可能他日人工智能的数学家、逻辑学家会发现到一个超越图灵机的计算模型——而我们无法理解?或者明天就有人发现了?(当然我认为这不可能。)

没有〈论可计算数〉,我们也许还有「计算机」可用,但那些「计算机」应会截然不同,发展也慢得多。在图灵机面世80年后,我只想介绍一下这个对人类历史有深刻影响的故事。

看完本文有什么想说的吗?欢迎大家留言讨论哦~

图灵发明的人工智能,破译了德国恩格密码机

图灵发明了破译德国格恩密码机,是计算机的雏形。但并不是人工智能,但对人工智能有很多贡献。艾伦·麦席森·图灵(Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,称为计算机科学之父,人工智能之父。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。图灵发明了破译德国格恩密码机,是计算机的雏形。但并不是人工智能,但对人工智能有很多贡献。艾伦·麦席森·图灵(Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,称为计算机科学之父,人工智能之父。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。

第二次世界大战期间图灵负责破译哪个国家的密码?

第二次世界大战期间图灵负责破译德国的密码,图灵是英国著名的数学家和逻辑学家,被称为计算机科学之父、人工智能之父,是计算机逻辑的奠基者,提出了“图灵机”和“图灵测试”等重要概念。曾协助英国军方破解德国的著名密码系统“谜”(Enigma),帮助盟军取得了二战的胜利

关于图灵

英国数学家、逻辑学家,被称为人工智能之父。 1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。

阿兰·麦席森·图灵,1912年生于英国伦敦,1954年死于英国的曼彻斯特,他是计算机逻辑的奠基者,许多人工智能的重要方法也源自于这位伟大的科学家。他对计算机的重要贡献在于他提出的有限状态自动机也就是图灵机的概念,对于人工智能,它提出了重要的衡量标准“图灵测试”,如果有机器能够通过图灵测试,那他就是一个完全意义上的智能机,和人没有区别了。他杰出的贡献使他成为计算机界的第一人,现在人们为了纪念这位伟大的科学家将计算机界的最高奖定名为“图灵奖”。上中学时,他在科学方面的才能就已经显示出来,这种才能仅仅限于非文科的学科上,他的导师希望这位聪明的孩子也能够在历史和文学上有所成就,但是都没有太大的建树。少年图灵感兴趣的是数学等学科。在加拿大他开始了他的职业数学生涯,在大学期间这位学生似乎对前人现成的理论并不感兴趣,什么东西都要自己来一次。大学毕业后,他前往美国普林斯顿大学也正是在那里,他制造出了以后称之为图灵机的东西。图灵机被公认为现代计算机的原型,这台机器可以读入一系列的零和一,这些数字代表了解决某一问题所需要的步骤,按这个步骤走下去,就可以解决某一特定的问题。这种观念在当时是具有革命性意义的,因为即使在50年代的时候,大部分的计算机还只能解决某一特定问题,不是通用的,而图灵机从理论上却是通用机。在图灵看来,这台机器只用保留一些最简单的指令,一个复杂的工作只用把它分解为这几个最简单的操作就可以实现了,在当时他能够具有这样的思想确实是很了不起的。他相信有一个算法可以解决大部分问题,而困难的部分则是如何确定最简单的指令集,怎么样的指令集才是最少的,而且又能顶用,还有一个难点是如何将复杂问题分解为这些指令的问题。

1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。

IT人物传记:计算机与人工智能之父图灵

什么是图灵机和图灵测试

阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.23—1954.6.7),英国数学家、逻辑学家,被称为人工智能之父。 1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。 阿兰·麦席森·图灵,1912年生于英国伦敦,1954年死于英国的曼彻斯特,他是计算机逻辑的奠基者,许多人工智能的重要方法也源自于这位伟大的科学家。他对计算机的重要贡献在于他提出的有限状态自动机也就是图灵机的概念,对于人工智能,它提出了重要的衡量标准“图灵测试”,如果有机器能够通过图灵测试,那他就是一个完全意义上的智能机,和人没有区别了。他杰出的贡献使他成为计算机界的第一人,现在人们为了纪念这位伟大的科学家将计算机界的最高奖定名为“图灵奖”。上中学时,他在科学方面的才能就已经显示出来,这种才能仅仅限于非文科的学科上,他的导师希望这位聪明的孩子也能够在历史和文学上有所成就,但是都没有太大的建树。少年图灵感兴趣的是数学等学科。在加拿大他开始了他的职业数学生涯,在大学期间这位学生似乎对前人现成的理论并不感兴趣,什么东西都要自己来一次。大学毕业后,他前往美国普林斯顿大学也正是在那里,他制造出了以后称之为图灵机的东西。图灵机被公认为现代计算机的原型,这台机器可以读入一系列的零和一,这些数字代表了解决某一问题所需要的步骤,按这个步骤走下去,就可以解决某一特定的问题。这种观念在当时是具有革命性意义的,因为即使在50年代的时候,大部分的计算机还只能解决某一特定问题,不是通用的,而图灵机从理论上却是通用机。在图灵看来,这台机器只用保留一些最简单的指令,一个复杂的工作只用把它分解为这几个最简单的操作就可以实现了,在当时他能够具有这样的思想确实是很了不起的。他相信有一个算法可以解决大部分问题,而困难的部分则是如何确定最简单的指令集,怎么样的指令集才是最少的,而且又能顶用,还有一个难点是如何将复杂问题分解为这些指令的问题。 1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。

著名的图灵测试,究竟是什么鬼

图灵测试是测试人在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。问过一些问题后,如果被测试者超过30%的答复不能使测试人确认出哪个是人、哪个是机器的回答,那么这台机器就通过了测试,并被认为具有人类智能。图灵测试 2014 的举办方英国雷丁大学发布新闻稿,宣称俄罗斯人弗拉基米尔·维西罗夫(Vladimir Veselov)创立的人工智能软件尤金·古斯特曼(Eugene Goostman)通过了图灵测试。如果这一结论获得确认,那么这将是人工智能乃至于计算机史上的一个里程碑事件。

阿兰·图灵英国数学家、逻辑学家,被视为计算机科学之父。 1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。

1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。

1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。

图灵什么意思?

图灵测试是测试计算机是否是智能!

图灵(Turing)奖”是美国计算机协会(ACM,Association for Computer Machinery)干 1966年设立的,专门奖励那些对计算机科学研究与推动计算机技术发展有卓越贡献的杰出科学家。设立的初衷是因为计算机技术的飞速发展,尤其到20世纪60年代,其已成为一个独立的有影响的学科,信息产业亦逐步形成,但在这一产业中却一直没有一项类似“诺贝尔”、“普利策”等的奖项来促进该学科的进一步发展,为了弥补这一缺陷,于是“图灵”奖便应运而生,它被公认为计算机界的“诺贝尔”奖。

“图 灵”为 何 如 此 幸 运

不少人梦寐以求的国际计算机的最高奖项——图灵奖,为何它如此幸运,真是说来话长。

阿兰·图灵(Alan Turing),1912年6月23日出生于英国伦敦,他被认为成二十世纪最著名的数学家之一,谁也没有想到他的名字会和计算机产业挂钩。

20世纪的数学界正在热烈的讨论本世纪最伟大的科学发现之一 ——昆特.哥德尔的不完全性定理,在那以前,数学家们总认为,一个数学问题虽然要找到答案也许会很困难,但理论上总有一个确定的答案,一个数学命题,要么是真的,要么是假的。而哥德尔的不完全定理指出:在一个稍微复杂一点的的数学公理系统中,总存在那样的命题,我们既不能证明它是真的,也不能证明它是假的。数学家们大吃一惊,发现以往大家认为绝对严密的数学中,原来有令人如此不安的不确定性。每个逻辑学家都在苦苦思索,试图为陷入了危机的数学找到一条出路,这些逻辑学家包括当时在剑桥的贝特朗.罗素( Bertrand Russell ) 、阿尔弗雷德.怀特海(Alfred Whitehead)、路德维格.维特斯根坦 ( Ludwig Wittgenstein) 等著名的逻辑学家。这时的图灵正在剑桥求学,他也同样为此问题陷入了困境。

1936年,图灵作出了他一生最重要的科学贡献,他在其著名的论文《论可计算数在判定问题中的应用(On Computer numbers with an Application to the Entscheidungs -problem)》一文中,以布尔代数[i]为基础,将逻辑中的任意命题(即可用数学符号)用一种通用的机器来表示和完成,并能按照一定的规则推导出结论。这篇论文被誉为现代计算机原理开山之作,它描述了一种假想的可实现通用计算的机器,后人称之为“图灵机”。

这种假想的机器由一个控制器和一个两端无限长的工作带组成。工作带被划分成一个个大小相同的方格,方格内记载着给定字母表上的符号。控制器带有读写头并且能在工作带上按要求左右移动。随着控制器的移动,其上的读写头可读出方格上的符号,也能改写方格上的符号。这种机器能进行多种运算并可用于证明一些著名的定理。这是最早给出的通用计算机的模型。图灵还从理论上证明了这种假想机的可能性。尽管图灵机当时还只是一纸空文,但其思想奠定了整个现代计算机发展的理论基础。

1945年,图灵被调往英国国家物理研究所工作。他结合自己多年的理论研究和战时制造密码破译机的经验,起草了一份关于研制自动计算机器(ACE:Automatic Computer Engine )的报告,以期实现他曾提出的通用计算机的设计思想。通过长期研究和深入思考,图灵预言,总有一天计算机可通过编程获得能与人类竞争的智能。1950年10月,图灵发表了题为《 机器能思考吗?》的论文,在计算机科学界引起巨大震撼,为人工智能学的创立奠定了基础。同年,图灵花费4万英镑,用了约800个电子管的ACE样机研制成功,它的存储容量比爱尼亚克[ii]大了许多。在公开演示会上,被认为是当时世界上速度最快、功能最强的计算机之一。图灵还设计了著名的“模仿游戏试验”,后人称之为“图灵测试”。该实验把被提问的一个人和一台计算机分别隔离在两间屋子,让提问者用人和计算机都能接受的方式来进行问答测试。如果提问者分不清回答者是人还是机器,那就证明计算机已具备人的智能(1993年美国波士顿计算机博物馆举行的著名的“图灵测试” [iii]充分验证了图灵的预言)。

这让我想起前几年IBM公司研制的计算机“深蓝”与国际象棋世界冠军卡斯帕罗夫进行的那场人机大战,最终以“深蓝”战胜卡斯帕罗夫而宣告结束,让我们不得不佩服图灵的天才预言。

现代计算机之父冯·诺依曼[iv]生前曾多次谦虚地说:如果不考虑巴贝奇[v]等人早先提出的有关思想,现代计算机的概念当属于阿兰·图灵。冯·诺依曼能把“计算机之父”的桂冠戴在比自己小10岁的图灵头上,足见图灵对计算机科学影响之巨大。

毒 液 浸 透 苹 果,如 睡 之 死 渗 入 ……

身为一名数学家, 图灵模型研制计算机的梦想在第二次世界大战的爆发中粉碎。当时,德国法西斯正对英伦三岛狂轰滥炸,图灵的祖国危在旦夕,怀着一腔报国热情,图灵前往英国外交部承担“超级机密”研究工作,即主持对德军通讯密码的破译工作。图灵便和历史上著名的布莱奇利公园以及加密电子机械装置ENIGMA联系在了一起。

ENIGMA是德国发明家亚瑟.谢尔比乌斯(Arthur Scherbius)发明的一种加密电子器,它被证明是有史以来最可靠的加密系统之一,二战期间它开始被德军大量用于铁路、企业当中。英国第40局(英国政府负责破译密码的间谍机构)开始恐慌,因为出现了大量他们无法破译的电文。在整整13年里,英国人和法国人都认为ENIGMA是不可破译的。针对这一情况,40局新设了它的机构——英国政府代码及加密学校(GCCS ,Government Code and Cipher School),总部坐落在白金汉郡的布莱奇利公园。在布莱奇利公园有一大批为破译ENIGMA作出卓越贡献的人们,图灵无疑是他们当中最值得叙述的一个。图灵发明了绰号为“炸弹” (Bombes)的解密机器,他被看成一位天才解密分析专家。战争结束,布莱奇利公园被关闭,“炸弹”被拆毁,所有战时有关密码分析和破译的档案资料都被销毁,直到1967年波兰出版第一本关于波兰破译ENIGMA方面的书,以及1974年温特伯坦姆写的《超级机密The Ultra Secret》一书出版,人们才知道图灵在分析解密方面的贡献。

1938年迪斯尼公司著名的动画片《白雪公主和七个小矮人》上映,图灵也观看了这部影片,在后来的日子里,他的同事常常听见他哼电影中巫婆王后泡制毒苹果的台词:“毒液 浸透苹果如睡之死渗入……”而图灵的一生正是在这首歌词中结束。

图灵在他生命的最后时光,没有机会看到自己被当作一个解密英雄来尊敬,相反,由于他同性恋的性倾向而倍受折磨。1952年因小偷入室行窃,图灵向警察报了案,但他却忘了向警察掩藏他和另一位男士同居的事实,同年他被警方逮捕,以“有伤风化罪”罪名遭到起诉,并被判为有罪。而这期间,他不得不忍受报纸媒体对他案件的公开全面报道。性倾向被公开,私生活曝光于大众,政府也取消了他情报部门的工作。他的脾气变的躁怒不安,性格阴沉郁悒。1954年6月8日,人们在图灵的寓所发现了他的尸体。他在自己的住处服用沾过氰化物的苹果而自杀。临死的前夜,也许图灵的耳边还回响着那首歌:“毒液浸透苹果如睡之死渗入……”

迄今为止,作为计算机界“诺贝尔奖”的图灵奖已走过了36个春秋。40多位图灵奖得主均对计算机科学与技术的发展创新做出了杰出贡献。他们在珍惜自己所获崇高荣誉的同时,也深切怀念阿兰·图灵这位在计算机创新史上永放光芒的先驱。

就是这样的测试!

  • 评论列表:
  •  绿邪痴魂
     发布于 2022-06-01 16:52:12  回复该评论
  • 很困难,但理论上总有一个确定的答案,一个数学命题,要么是真的,要么是假的。而哥德尔的不完全定理指出:在一个稍微复杂一点的的数学公理系统中,总存在那样的命题,我们既不能证明它是真的,也不能证明它是假的。数学家们大吃一惊,发现以往大家认为绝
  •  寻妄寻倌
     发布于 2022-06-02 01:36:40  回复该评论
  • —就这样,每个图灵机都获得一个标准编号。下一步,图灵构造了一部特别的图灵机,称为「通用图灵机」。通用图灵机可以「扮演」不同的图灵机——只要输入某部图灵机M的标准编号,它就可以像M一样印出相同的符号序列。如果上面的句子太过抽象,不妨换个(灵异一点的)说法︰有了通用图灵

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.